Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies

نویسندگان

  • Mohammed Farag
  • Mina Attari
  • S. Andrew Gadsden
  • Saeid R. Habibi
چکیده

Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared. Keywords—State of charge estimation, battery modeling, one-state hysteresis, filtering and estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of State of Charge of Lithium-ion Battery Based on Photovoltaic Generation Energy Storage System

Original scientific paper The fast and accurate estimation of state of charge (SOC) of lithium-ion battery is one of the key technologies of battery management system. In view of this nonlinear dynamic system of lithium battery, through the test and analysis of lithium-ion battery hysteresis characteristics, the second-order RC hysteresis model is established, and the cubature Kalman filter alg...

متن کامل

Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter

Accurate modeling of the nonlinear relationship between the open circuit voltage (OCV) and the state of charge (SOC) is required for adaptive SOC estimation during the lithium-ion (Li-ion) battery operation. Online SOC estimation should meet several constraints, such as the computational cost, the number of parameters, as well as the accuracy of the model. In this paper, these challenges are co...

متن کامل

Estimation of State of Charge of Lithium-Ion Batteries Used in HEV Using Robust Extended Kalman Filtering

A robust extended Kalman filter (EKF) is proposed as a method for estimation of the state of charge (SOC) of lithium-ion batteries used in hybrid electric vehicles (HEVs). An equivalent circuit model of the battery, including its electromotive force (EMF) hysteresis characteristics and polarization characteristics is used. The effect of the robust EKF gain coefficient on SOC estimation is analy...

متن کامل

State of Charge Estimation for Lithium-Ion Battery Based on Nonlinear Observer: An H∞ Method

This work is focused on the state of charge (SOC) estimation of a lithium-ion battery based on a nonlinear observer. First, the second-order resistor-capacitor (RC) model of the battery pack is introduced by utilizing the physical behavior of the battery. Then, for the nonlinear function of the RC model, a one-sided Lipschitz condition is proposed to ensure that the nonlinear function can play ...

متن کامل

Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles

Estimation of state of charge (SOC) is of great importance for lithium-ion (Li-ion) batteries used in electric vehicles. This paper presents a state of charge estimation method using nonlinear predictive filter (NPF) and evaluates the proposed method on the lithium-ion batteries with different chemistries. Contrary to most conventional filters which usually assume a zero mean white Gaussian pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017